ST S
Y

.“-" " ¥, 3 : ' .

,l, N - . 0 : < r ’

’.; F \ ~- ¥ & o .\.\
S~ ’ " ‘ , i - R 4 ¥ -~ ‘
- - 1 N

3

Dr. Neil Ernst
Department of Computer Science
University of Victoria S
nernstQuvic.ca

:’

.

mailto:nernst@uvic.ca

2 | Technical Debt

Research angle: Identify and understand when, and why, we take
short-cuts in our engineering approach to software.

Practical angle: unpaid technical debt generates interest:
Increased defect counts,

low quality (e.g. latency)

slow releases.

However: TD is everywhere and incurring debt is not always bad!

Lines of code

3 Software Will Not Go Away

16 €7

14

1.2

1.0

0.8

0.6

04

0.2

0.0

Code added in 2005
Code added in 2006

Code added in 2007
Code added in 2008
Code added in 2009
Code added in 2010
Code added in 2011
Code added in 2012
Code added in 2013
Code added in 2014
Code added in 2015
Code added in 2016

2007

source: https://erikbern.com/2016/12/05/the-half-life-of-code.html

Linux Kernel,
additions by
year

2013 2015

https://erikbern.com/2016/12/05/the-half-life-of-code.html

GCOMPUTATION

ALL THE THINGS!

5 | Software enters the Moneyball era

Moneyball: identify the key attributes in winning games, measure players
against those attributes, manage teams to maximize those attributes

On Base + Slugging
Wins Above Replacement

Software analytics: identify key attributes in delivering software, measure
delivery against those attributes, manage teams to maximize those attributes
Mean time to repair
Cycle time (feature idea to customer)
Technical Debt

Technical Debt in Practice
ORLEIE
Why It Matters
ldentifying TD
Managing 1D
Avoiding TD

7

“Technical debt occurs when a design or construction approach is
taken that's expedient in the short term, but that creates a
technical context that increases complexity and cost in the long
term.”

Steve McConnell (Code Complete)

8

“Shipping first time code is like going into debt. A little debt
speeds development so long as it is paid back promptly with
a rewrite... The danger occurs when the debt Is not repaid.
Every minute spent on not-quite-right code counts as interest

on that debt.
Ward Cunningham

Ward Cunningham on TD: http://c2.com/doc/oopsla92.html

Reckless Prudent

“We don’t have time “We must ship now
for design” and deal with
consequences’
Deliberate
Inadvertent

“Now we know how we

“What' Layering?” should have done it”

Martih Fowler https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

Visible Invisible
Hidden,

Positive zlesa:tb l: :e architectural
Value feature
Negative Technical debt
Value

Kruchten, P. 2009. What colour is your backlog? Agile Vancouver Conference.
hitp://pkruchten.wordpress.com/Talks.

10

11

Cause

Implementation Deployment

Manual
_ Deployment
Poor RE Coding Style
Deprecated
Libraries No
Staging

nefficient Single
_gnorance o o Velocity
equirements Code Poor
Duplication Observability
Time
Warp Improper
Cognitive Separation of Slow Tests Docs Not
Distance Concerns Traceable
Flaky Tests
_ Tangled Y Devs Answer
Newbie Dependencies All Questsi
Free-Riding P uestions
Organizational Lack of Tests Docs
Silo Clone & Own Outdated
Poor Test
Unplannead Coverage
Evolution

Team/Social Design/Architecture

Effect

Technical Debt

Technical Debt in Practice
What It Is
(® Why It Matters
[dentifying TD
Managing 1D
Avoiding TD

13 | Technical Debt in Big Science

Consider the ALMA telescope in Chile
Design — Construction — Commissioning —
Science Operations

Over $1B budget
Expected to operate for decades

— Design choices made 20 years ago constrain implementation today
e.g. Tango middleware

— A big part is social debt: organizational shortcuts like poor teaming

14 | Technical Debt in Research Computing

LHC High Luminosity:
“Most of the current software, which defines our capabilities, was designed
15-20 years ago: there are many software sustainability challenges.”

Square Kilometre Array:
“we try and keep technical debt under control, maintaining a system where
we can estimate what’s the amount of technical debt we are dealing with,
and using capacity allocation to prevent it from diverging to an uncontrollable
amount”

better codin erformance
9 P new hardware

techniques best enhancement _ _
new \ oractices configurations
insights -
rt
0
new code topnew
data Physics cleanup , .~ Operational « olatforms

research concerns

N um |
.’ Code
< Other Base , K
. research . Customers

Analysis
of climate
simulation
runs

Analysis
of NWP
forecast
runs

comparison
with
other models

comparison comparison new ;‘;‘;‘gj‘;ys
with with forecasting
observations control run services

Easterbrook and Johns, Engineering the Software for Understanding Climate Change, Computing in Science & Engineering, 2009

Conway’s law creates long-term risk

organizations which design systems ... are
constrained to produce designs which are copies
of the communication structures of these
organizations.

— M. Conway

16

17 | SKA - Central intentions and distributed design

System HQ
Design

Design Design

Regional Centre

Signal Processor Array - S.A.

Design Design

Data Transport

Design Design

Science Management

181 So What To Do?

e |dentify, manage, avoid
e Research software development:
O many stakeholders: local department computing, admin, faculty,
students
O many constraints: low budgets, staff turnover, pressure to publish,
security, etc,
O Legacy systems to maintain, for little reward (currently!)new technology
constantly emerging
O Lack of resources and time to do the above!

Technical Debt in Practice
What It Is
Why It Matters
(® Identifying TD
Managing 1D
Avoiding TD

20 | [dentify

Self-admitted TD: code flags to return to (“fixme” or “TD”)

1D tools
Sonargqube, Codescene, Code Sonar, Code Inspector ...
Key: properly configure the tool.
Track the change over time!
Expect to find 7-15% debt in your backlog

1D 1Is not just code or design
Tests, Infrastructure as Code, social - look broadly

addeduvlrs.putivratn, vrain;,;

if (!skipWriting) {
final ZipEntry ze = new ZipEntry(vPath);

// ZIPs store time with a granularity of 2 seconds, round up
final int millisToAdd = roundUp ? ROUNDUP_MILLIS : 9;

| | Self-Admitted
if (fixedModTime '= null) { _
ze.setTime (modTimeMillis); TeCh n | Cal Debt

} else if (dir != null && dir.isExists()) {
ze.setTime(dir.getLastModified() + millisToAdd);

} else {
ze.setTime(System.currentTimeMillis() + millisToAdd);

}

ze.setSize(0);

// This is faintly ridiculous:

ze.setUnixMode (mode) ;

if (extra !'= null) {
ze.setExtraFields(extra);

z0ut.putNextEntry(ze);

VE:
* This 1s a hacky construct to extend the zipFile method to

% support a new parameter (extra fields to preserve) without

ing subclasses that override the old method signature
*/
private static final ThreadlLocal<ZipExtraField[]> CURRENT_ZIP_EXTRA = new ThreadlLocal<>();

B Flow Framework I 22 @neilernst

Flow Metrics Business Results

» Flow Velocity +$ Value <
== Flow Efficiency -$ Cost &
W
o Flow Time b Quality i
o]
& Flow Load ® Happiness g
4]
@ Features # Defects A Risks A Debts »
o
Product Model .
s
c
®
§ 2
o o
5
& &
<
g
=
>
| 3
: ' Z
® o
. s
= o
=
7

ZSO
’IJONQ;N |ooy

Ideate Create Release Operate

Technical Debt in Practice
What It Is
Why It Matters
[dentifying TD
(®» Managing TD
Avoiding TD

24 | Manage

Technical Debt Item: an issue tracker tag or label identifying incurred debt

Risk registers: how risky is the design & how committed are we to that
choice?

Metrics: MTTR, Cycle time (feature delivery), Risk exposure (trends)

Budget: Make the case for TD time: efficiency, developer satisfaction, actual
costs

Visible Invisible
Hidden,

Positive \Fhesa':) l: fe architectural
Value feature
Negative Technical debt
Value

Kruchten, P. 2009. What colour is your backlog? Agile Vancouver Conference.
hitp://pkruchten.wordpress.com/Talks.

25

Backlogs

Defect

Defect

Defect

Defect

Architecture

27 | lterative Patterns

Effort

Green = dev work
Yellow = Arch/TD work

(a) YAGNI

(b) Hardening

(c) Iteration Zero
(d) Rework

(e) Runway (SAFe)

Eftort

Technical Debt in Practice
What It Is
Why It Matters
ldentifying TD
Managing 1D
(® Avoiding TD

29 | Future-Proofing Approaches

Modularize for evolution
Tradeoft: integration risk
Modularize for release
Tradeoff: duplication
Defer decisions until Last Responsible Moment
Tradeoftf: schedule impact, duplicated work
Evaluate architecture approach regularly with business goal scenarios

Tradeoff: cost, process buy-in

30 | SKA Prelim. Design Review
\mPLEMENT AND EVQLVE

Attribute-
Driven
Design

Quality
Attribute
Workshop

N
BUSINESS 1
~ AND AR[T:rhl;rEc:[lﬂ;E

3
© 'GOALS By

Architecture Tradeoff
Analysis Method
(ATAM), Active Reviews

for Intermediate Design

31 | Technical Debt in Research Software

Very rare to see Peer Review of research code (outside large projects)

Most scientists can probably remember at least once when the code made a
mistake (Rogoff Excel error)

At big data volumes, even supposedly non-core activities—like data storage—
can become sources of error, bit rot, etc.

Avoid inadvertent TD:
Initiatives like Software Carpentry, this conference!, Soc. for Research S/W
Archival data repositories like Zenodo and Figshare
Reproducibility efforts

https://theconversation.com/the-reinhart-rogoff-error-or-how-not-to-excel-at-economics-13646

32 @neilernst

Reckless “Prudent

Avoid

“We don’t have time “We must ship now
for design™ 1 and deal with ;
” consequences” \

Deliberate

Inadvertent

“What's Layering?”

33 | Software Moneyball

Software analytics: identify key attributes in delivering software,
measure delivery against those attributes, manage teams to maximize
those attributes and avoid 1D

It has never been easier to automate this!

Technical Debt
In Practice

Nei1l Ernst

nernst@uvic.ca
@neillernst

New book: Technical

Debt in Practice
Neil Ernst, Julien Delange, and Rick Kazman (Aug 2021 : MIT PreSS)

mailto:nernst@uvic.ca

