
Eoin Woods
@eoinwoodz | www.eoinwoods.info

BUILDING APPLICATIONS SECURELY

EOIN WOODS

• Endava’s CTO, based in London (6 years)
• 10+ years in products - Bull, Sybase, InterTrust
• 10 years in capital markets - UBS and BGI

• Software engineer, architect, now CTO

• Long time security dabbler concerned at increasing cyber threats to systems

• Author, editor, speaker, community guy

CONTEXT OF THIS TALK

link

link

link

https://speakerdeck.com/eoinwoods/secure-by-design-at-accu-2019
https://speakerdeck.com/eoinwoods/common-webapp-vulnerabilities-and-what-to-do-about-them-2018-update
https://speakerdeck.com/eoinwoods/system-security-beyond-the-libraries

4

Agenda

1. The Threat

2. Mit igat ion v ia Software Secur i ty
3. Pr inc ip les for Secure Implementat ion
4. Implementat ion Guidel ines
5. Summary

1

The Threat

BUILDING APPLICATIONS SECURELY

SECURITY THREATS

•We need systems that are dependable in the face of
•Malice, Mistakes, Mischance

•People are sometimes bad, careless or just unlucky

•System security aims to mitigate these situations

TODAY’S THREAT LANDSCAPE

Today’s internal application is tomorrow’s “digital channel”

System interfaces on the Internet

Introspection of APIs

Attacks being ”weaponized”

DATA BREACHES: 2005 - 2007

http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

DATA BREACHES: 2008 - 2011

DATA BREACHES: 2012 - 2015

DATA BREACHES: 2016 - 2018

DATA BREACHES: 2019 – 2021

THE IMPORTANCE OF SOFTWARE SECURITY

• Verizon research security
incidents annually
• There are many root causes
• Applications are significant
• This study suggests that about a

quarter are application related

https://enterprise.verizon.com/resources/reports/dbir

Applications
23%

Crimeware
6%

Cyber-Espionage
3%

Denial of Service
62%

Other
3%

Payment Cards
2%

Stolen Assets
1%

2

Mitigation via Software Security

BUILDING APPLICATIONS SECURELY

DIMENSIONS OF SECURITY PRACTICE

SECURE SYSTEM OPERATION

SECURE APPLICATION
IMPLEMENTATION

SECURE APPLICATION DESIGN SECURE INFRASTRUCTURE
DESIGN

SECURE INFRASTRUCTURE
DEPLOYMENT

SECURE APPLICATION IMPLEMENTATION

SECURE APPLICATION
IMPLEMENTATION

HOW YOU BUILD

WHAT YOU DO

HOW YOU VERIFY

S-SDLC

PRINCIPLES &
GUIDELINES

TESTING &
VALIDATION

Secure Design
Inputs

SECURITY IN THE DEVELOPMENT LIFECYCLE

Microsoft SDL OWASP SAMM SAFECode
Fundamental

Practices

Building Security In
Maturity Model

MICROSOFT SECURE DEVELOPMENT LIFECYCLE

• Developed by Microsoft for their product groups
• 17 practices across the lifecycle
• Good resources available from Microsoft
• Needs to be applied to your development lifecycle

OWASP SOFTWARE ASSURANCE MATURITY MODEL

• Project from OWASP volunteers since 2008
• Governance, Construction, Verification & Operation
• Three key practice areas for each
• Maturity model rather than an SDLC

“BUILDING SECURITY IN” MATURITY MODEL

• Synopsys study of software
security practice

• Member firms surveyed to
establish practices

• Statistics & trends published
• Organisations can

“benchmark” against
aggregated findings

SAFECODE

• Membership organization of
some leading software
security firms

• Publish free on-demand
training, blogs and guides

3

Principles for Secure Development

BUILDING APPLICATIONS SECURELY

SECURE DEVELOPMENT PRINCIPLES

1. Security is everyone’s concern

2. Focus continually through the lifecycle

3. Good design improves security

4. Use proven tools and technologies

5. Automate security checking

6. Verify your software supply chain

7. Generic and technology specific concerns matter

SECURITY IS EVERYONE’S CONCERN

• A “concern“ not a ”feature”
• Needs team-wide awareness
• Avoid security being a

”specialist” problem
• Integrate security awareness into

normal dev tasks

SECURITY CHAMPIONS

• Security is everyone’s problem …
but always someone else’s

• You need enthusiastic advocates
• People who will take ownership

• Self-selecting ”security champions”
• Invest, involve, promote, support
• don’t isolate them!

FOCUS CONTINUALLY THROUGH THE LIFECYCLE

• Cannot “test security in”
• Traditional security testing

delays deployment
• Need continual security work

through lifecycle
• analysis, design, dev, test, …

A WORD ON DEVSECOPS

“Security says no”

We’re all security engineers now

⇒ “Security” is another silo to integrate
into the cross-functional delivery team

GOOD DESIGN IMPROVES SECURITY

• Careless design often creates
vulnerabilities
• Strong types, simple

mechanisms, well structured
code all aid security
• Simpler implementation is easier

to understand & secure

GOOD DESIGN IMPROVES SECURITY

Perfectly “reasonable” code … but with a potential security problem
… what happens if qty < 0 ?

GOOD DESIGN IMPROVES SECURITY

Example of DDD improving security ”for free”

USE PROVEN TOOLS AND TECHNOLOGY

• Software is hard to secure
• Security software is very hard to

secure
• Vulnerabilities emerge over time

(from attacks)
• Proven tools & technology

reduce production vulnerabilities

AUTOMATE SECURITY CHECKING

• Some security checks can be
automated – SAST, DAST
• Consistency and efficiency
• Find (some) problems earlier
• Challenges include false positives

and responding effectively
• Only ever part of the solution

VERIFY YOUR SOFTWARE SUPPLY CHAIN

• 3rd party code is a possible risk –
often open source
• Tools exist for OSS security, risk

& compliance:
• BlackDuck, Whitesource,

Sonatype, Snyk, …
• Scan code to find dependencies
• Checks for known vulnerabilities
• Alerts and dashboards for

monitoring

GENERAL AND SPECIFIC CONCERNS MATTER

•Many security concerns
transcend technology
• Injection, logging, …

• Technical stacks also have their
specific weaknesses:
• C/C++ - memory management
• Java – reflection, serialisation
• Python – module loading

4

Implementation Guidelines

BUILDING APPLICATIONS SECURELY

GENERIC SECURE CODING GUIDELINES

OWASP Secure
Coding Practices

SAFECode Secure
Coding Practices

Common Weaknesses
Enumeration

TECHNOLOGY SPECIFIC GUIDELINES

Secure Coding
Guidelines

.NET Secure
Coding Guidelines

SECURE CODING GUIDELINES

• There are quite a few standards, which overlap significantly

•Need time to understand and apply
•Oracle Java Security Guidelines contains 71 guidelines in 10 sections

• Something for your Security Champions to work through
•you need the practical minimal subset for your threats and risks

GENERIC EXAMPLE – INJECTION ATTACKS

Unvalidated input passed to any interpreter
• Operating system and SQL are most common
• Configuration injection often overlooked

Defences include “escaping” inputs, bind variables, using white lists, …

SELECT * from table1 WHERE name = ’%1’

Set ‘%1’ to ‘ OR 1=1 -- … this results in this query:

SELECT * FROM table1 WHERE name = ’ ’ OR 1=1 --

JAVA SPECIFIC EXAMPLE – RANDOM NUMBERS

Java has two random number generators:
java.util.Random and java.security.SecureRandom

Guess which one isn’t random but most people use?

$> java com.artechra.RandomTest
Util Random Execution Time: 7
Secure Random Execution Time: 49

Python has a serialization system called “Pickle”
• Java, C# and others have similar mechanisms

A useful way of moving data around … and a security liability

To be fair, the docs clearly state:
“The pickle module is not secure. Only unpickle data you trust.”

PYTHON SPECIFIC EXAMPLE – UNPICKLING DATA

SECURITY TESTING AND VALIDATION

• Like any other critical system quality application security needs to be tested early
and often – mix of automation and manual techniques
• Detailed description of testing is beyond this talk
• But we need to be aware of it so that we know someone is doing it

• Automated security testing: Static Analysis (SAST) and Dynamic Analysis (DAST)

• Automated functional testing: do the application security features work?

• Exploratory testing: fuzz testing and penetration testing

• Platform testing: testing application’s use of platform & configuration

Remember: security also needs to be tested from an infrastructure and operational perspective!

5

Summary

BUILDING APPLICATIONS SECURELY

SUMMARY (I)

•Much of the technology we use is inherently insecure
•Mitigation needs to be part of application development

•Attacking systems is becoming industrialised
•Digital transformation is providing more valuable, insecure targets

• Secure implementation is part of an end-to-end approach

SUMMARY (II)

• Three aspects to secure implementation
•HOW do you go about building the software? (SDLC)
•WHAT do you do to build the software? (Principles, Guidelines)
•HOW do you verify what you build? (Testing, Validation)

•We explored a set of principles
• Security is everyone’s concern
• Continual focus through the lifecycle
• Good design improves security
• Use proven tools and technologies
• Automate security checking

• Verify your software supply chain
• Generic and technology specific

concerns matter

SUMMARY (III)

•Both generic and language-specific concerns
•A number of sets of guidelines exist … use them!
•SAFECode, OWASP Secure Coding Practices, Oracle Secure Java

Guidelines, Microsoft .NET Secure Guidelines, CERT Coding Practices

•We haven’t explored security testing and validation
• critically important and another area to learn about
• involve specialist experts, particularly for manual aspects

BOOKS & PUBLICATIONS

WHAT DO I DO NEXT?

Get started …

Work out where you are …

Get some people interested …

Work out what to improve next …

Improve that thing …

REPEAT !

Eoin Woods
Endava
@eoinwoodz
eoin.woods@endava.com
careers.endava.com

THANK YOU

51

