
Dr. Neil Ernst 
Department of Computer Science 

University of Victoria 
nernst@uvic.ca

Technical Debt in Practice

1

mailto:nernst@uvic.ca


Technical Debt2

Research angle: Identify and understand when, and why, we take 
short-cuts in our engineering approach to software.

Practical angle: unpaid technical debt generates interest:

increased defect counts, 

low quality (e.g. latency) 

slow releases. 


However: TD is everywhere and incurring debt is not always bad!



Software Will Not Go Away3

source: https://erikbern.com/2016/12/05/the-half-life-of-code.html

Linux Kernel, 
additions by 

year

https://erikbern.com/2016/12/05/the-half-life-of-code.html
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Software enters the Moneyball era5

Moneyball: identify the key attributes in winning games, measure players 
against those attributes, manage teams to maximize those attributes 


On Base + Slugging

Wins Above Replacement


Software analytics: identify key attributes in delivering software, measure 
delivery against those attributes, manage teams to maximize those attributes


Mean time to repair

Cycle time (feature idea to customer)

Technical Debt
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“Technical debt occurs when a design or construction approach is 
taken that's expedient in the short term, but that creates a 
technical context that increases complexity and cost in the long 
term.”


Steve McConnell (Code Complete)
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“Shipping first time code is like going into debt. A little debt 
speeds development so long as it is paid back promptly with 
a rewrite... The danger occurs when the debt is not repaid. 
Every minute spent on not-quite-right code counts as interest 
on that debt. 


Ward Cunningham 

Ward Cunningham on TD: http://c2.com/doc/oopsla92.html



Martin Fowler https://martinfowler.com/bliki/TechnicalDebtQuadrant.html 9

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
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Technical Debt in Big Science13

Consider the ALMA telescope in Chile

Design → Construction → Commissioning → 
Science Operations


Over $1B budget

Expected to operate for decades


→ Design choices made 20 years ago constrain implementation today

e.g. Tango middleware


→ A big part is social debt: organizational shortcuts like poor teaming



Technical Debt in Research Computing14

LHC High Luminosity: 
“Most of the current software, which defines our capabilities, was designed 
15-20 years ago: there are many software sustainability challenges.” 

Square Kilometre Array: 
“we try and keep technical debt under control, maintaining a system where 
we can estimate what’s the amount of technical debt we are dealing with, 
and using capacity allocation to prevent it from diverging to an uncontrollable 
amount”
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Easterbrook and Johns, Engineering the Software for Understanding Climate Change, Computing in Science & Engineering, 2009



Conway’s law creates long-term risk

organizations which design systems ... are 
constrained to produce designs which are copies 
of the communication structures of these 
organizations. 

— M. Conway

“
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SKA - Central intentions and distributed design 
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Regional Centre

Design



So What To Do? 18

● Identify, manage, avoid

● Research software development:

○ many stakeholders: local department computing, admin, faculty, 

students

○ many constraints: low budgets, staff turnover, pressure to publish, 

security, etc, 

○ Legacy systems to maintain, for little reward (currently!)new technology 

constantly emerging

○ Lack of resources and time to do the above! 
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Identify20

Self-admitted TD: code flags to return to (“fixme” or “TD”)


TD tools

Sonarqube, Codescene, Code Sonar, Code Inspector …

Key: properly configure the tool. 

Track the change over time!

Expect to find 7-15% debt in your backlog


TD is not just code or design

Tests, Infrastructure as Code, social - look broadly



Self-Admitted  
Technical Debt
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Manage24

Technical Debt Item: an issue tracker tag or label identifying incurred debt


Risk registers: how risky is the design & how committed are we to that 
choice?


Metrics: MTTR, Cycle time (feature delivery), Risk exposure (trends)


Budget: Make the case for TD time: efficiency, developer satisfaction, actual 
costs
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Backlogs

Feature
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Iterative Patterns27

Green = dev work

Yellow = Arch/TD work


(a) YAGNI

(b) Hardening

(c) Iteration Zero

(d) Rework

(e) Runway (SAFe)
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Future-Proofing Approaches29

Modularize for evolution


Tradeoff: integration risk


Modularize for release


Tradeoff: duplication


Defer decisions until Last Responsible Moment


Tradeoff: schedule impact, duplicated work


Evaluate architecture approach regularly with business goal scenarios


Tradeoff: cost, process buy-in



SKA Prelim. Design Review30
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Technical Debt in Research Software31

Very rare to see Peer Review of research code (outside large projects)

Most scientists can probably remember at least once when the code made a 
mistake (Rogoff Excel error)

At big data volumes, even supposedly non-core activities—like data storage— 
can become sources of error, bit rot, etc.


Avoid inadvertent TD: 

Initiatives like Software Carpentry, this conference!, Soc. for Research S/W 

Archival data repositories like Zenodo and Figshare

Reproducibility efforts

https://theconversation.com/the-reinhart-rogoff-error-or-how-not-to-excel-at-economics-13646
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Avoid
32



Software Moneyball33

Software analytics: identify key attributes in delivering software, 
measure delivery against those attributes, manage teams to maximize 
those attributes and avoid TD


It has never been easier to automate this! 



New book: Technical 
Debt in Practice  
(Aug 2021, MIT Press)

Neil Ernst  
nernst@uvic.ca 

@neilernst
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