
Dr. Neil Ernst
Department of Computer Science

University of Victoria
nernst@uvic.ca

Technical Debt in Practice

1

mailto:nernst@uvic.ca

Technical Debt2

Research angle: Identify and understand when, and why, we take
short-cuts in our engineering approach to software.

Practical angle: unpaid technical debt generates interest:

increased defect counts,

low quality (e.g. latency)

slow releases.

However: TD is everywhere and incurring debt is not always bad!

Software Will Not Go Away3

source: https://erikbern.com/2016/12/05/the-half-life-of-code.html

Linux Kernel,
additions by

year

https://erikbern.com/2016/12/05/the-half-life-of-code.html

4

Software enters the Moneyball era5

Moneyball: identify the key attributes in winning games, measure players
against those attributes, manage teams to maximize those attributes

On Base + Slugging

Wins Above Replacement

Software analytics: identify key attributes in delivering software, measure
delivery against those attributes, manage teams to maximize those attributes

Mean time to repair

Cycle time (feature idea to customer)

Technical Debt

Technical Debt in Practice
What It Is

Why It Matters

Identifying TD

Managing TD

Avoiding TD

6

7

“Technical debt occurs when a design or construction approach is
taken that's expedient in the short term, but that creates a
technical context that increases complexity and cost in the long
term.”

Steve McConnell (Code Complete)

8

“Shipping first time code is like going into debt. A little debt
speeds development so long as it is paid back promptly with
a rewrite... The danger occurs when the debt is not repaid.
Every minute spent on not-quite-right code counts as interest
on that debt.

Ward Cunningham

Ward Cunningham on TD: http://c2.com/doc/oopsla92.html

Martin Fowler https://martinfowler.com/bliki/TechnicalDebtQuadrant.html 9

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

10

11

Improper
Separation of
Concerns

Technical Debt

Requirements

Poor RE

Design/Architecture

Implementation

Coding Style

Deployment

Testing Documentation

Cause Effect

Inefficient
Code

Docs Not
Traceable

Docs
OutdatedClone & Own

Slow Tests

Lack of Tests

Ignorance of
Requirements

Tangled
Dependencies

Unplanned
Evolution

Deprecated
Libraries

Code
Duplication

Manual
Deployment

Single
Velocity

No
Staging

Poor
Observability

Devs Answer
All Questions

Poor Test
Coverage

Flaky Tests

Cognitive
 Distance

Team/Social

Newbie
 Free-Riding

Time
Warp

Organizational
Silo

Technical Debt in Practice
What It Is

Why It Matters

Identifying TD

Managing TD

Avoiding TD

12

Technical Debt in Big Science13

Consider the ALMA telescope in Chile

Design → Construction → Commissioning →
Science Operations

Over $1B budget

Expected to operate for decades

→ Design choices made 20 years ago constrain implementation today

e.g. Tango middleware

→ A big part is social debt: organizational shortcuts like poor teaming

Technical Debt in Research Computing14

LHC High Luminosity:
“Most of the current software, which defines our capabilities, was designed
15-20 years ago: there are many software sustainability challenges.”

Square Kilometre Array:
“we try and keep technical debt under control, maintaining a system where
we can estimate what’s the amount of technical debt we are dealing with,
and using capacity allocation to prevent it from diverging to an uncontrollable
amount”

15

Easterbrook and Johns, Engineering the Software for Understanding Climate Change, Computing in Science & Engineering, 2009

Conway’s law creates long-term risk

organizations which design systems ... are
constrained to produce designs which are copies
of the communication structures of these
organizations.

— M. Conway

“

16

SKA - Central intentions and distributed design

Data Processor Array - Aus.

Array - S.A.

Data Transport Science Management

Signal Processor

Design

Design

Design

Design

DesignDesign

System HQ

17

Regional Centre

Design

So What To Do? 18

● Identify, manage, avoid

● Research software development:

○ many stakeholders: local department computing, admin, faculty,

students

○ many constraints: low budgets, staff turnover, pressure to publish,

security, etc,

○ Legacy systems to maintain, for little reward (currently!)new technology

constantly emerging

○ Lack of resources and time to do the above!

Technical Debt in Practice
What It Is

Why It Matters

Identifying TD

Managing TD

Avoiding TD

19

Identify20

Self-admitted TD: code flags to return to (“fixme” or “TD”)

TD tools

Sonarqube, Codescene, Code Sonar, Code Inspector …

Key: properly configure the tool.

Track the change over time!

Expect to find 7-15% debt in your backlog

TD is not just code or design

Tests, Infrastructure as Code, social - look broadly

Self-Admitted
Technical Debt

21

@neilernst22

Technical Debt in Practice
What It Is

Why It Matters

Identifying TD

Managing TD

Avoiding TD

23

Manage24

Technical Debt Item: an issue tracker tag or label identifying incurred debt

Risk registers: how risky is the design & how committed are we to that
choice?

Metrics: MTTR, Cycle time (feature delivery), Risk exposure (trends)

Budget: Make the case for TD time: efficiency, developer satisfaction, actual
costs

25

Backlogs

Feature

Defect

Defect

Defect

Feature

Feature Debt

Architecture

Defect

Defect

Feature

Feature

Iterative Patterns27

Green = dev work

Yellow = Arch/TD work

(a) YAGNI

(b) Hardening

(c) Iteration Zero

(d) Rework

(e) Runway (SAFe)

Technical Debt in Practice
What It Is

Why It Matters

Identifying TD

Managing TD

Avoiding TD

28

Future-Proofing Approaches29

Modularize for evolution

Tradeoff: integration risk

Modularize for release

Tradeoff: duplication

Defer decisions until Last Responsible Moment

Tradeoff: schedule impact, duplicated work

Evaluate architecture approach regularly with business goal scenarios

Tradeoff: cost, process buy-in

SKA Prelim. Design Review30

Quality
Attribute

Workshop

Architecture Tradeoff
Analysis Method

(ATAM), Active Reviews
for Intermediate Design

BUSINESS
AND

MISSION
GOALS

ARCHITECTURE SYSTEM

Attribute-
Driven
Design

Technical Debt in Research Software31

Very rare to see Peer Review of research code (outside large projects)

Most scientists can probably remember at least once when the code made a
mistake (Rogoff Excel error)

At big data volumes, even supposedly non-core activities—like data storage—
can become sources of error, bit rot, etc.

Avoid inadvertent TD:

Initiatives like Software Carpentry, this conference!, Soc. for Research S/W

Archival data repositories like Zenodo and Figshare

Reproducibility efforts

https://theconversation.com/the-reinhart-rogoff-error-or-how-not-to-excel-at-economics-13646

@neilernst

Avoid
32

Software Moneyball33

Software analytics: identify key attributes in delivering software,
measure delivery against those attributes, manage teams to maximize
those attributes and avoid TD

It has never been easier to automate this!

New book: Technical
Debt in Practice
(Aug 2021, MIT Press)

Neil Ernst  
nernst@uvic.ca

@neilernst

mailto:nernst@uvic.ca

