
A Holistic Approach to Pain Relief for
Research Software Developers

Spencer Smith, Jacques Carette

Computing and Software Department
Faculty of Engineering
McMaster University

Canadian Research Software Conference, Montréal,
May 31–June 1, 2022

Slide 2 of 38

Health Goals

Literate

Code Gen

Holistic

Conclusion

References

Outline

• Sustainable and Reproducible Research Software
• Pain Points
• Treatment Options

• Literate Programming
• Code Generation
• Holistic Approach

• Concluding Remarks

Slide 3 of 38

Health Goals

Literate

Code Gen

Holistic

Conclusion

References

Health Goals

• Sustainable software satisfies, for a reasonable
amount of effort, the software requirements for the
present (like correctness), while also being
maintainable, reusable, and reproducible for the future.

• Reproducible research includes all data, code, and
documentation so that the computations can be
repeated in the future with identical results.

Requires design, documentation, and verification (testing)

Slide 4 of 38

Health Goals

Literate

Code Gen

Holistic

Conclusion

References

Problems with Achieving
Goals: Pain Points

From Developer Interviews:
• Lack of time
• Lack of software development experience
• Lack of technology experience
• Frequency of change

Slide 5 of 38

Health Goals

Literate

Code Gen

Holistic

Conclusion

References

Treatment 1: Literate
Programming

• “instead of imagining that our main task is to instruct a
computer what to do, let us concentrate rather on
explaining to human beings what we want a computer
to do” (Knuth, 1984, pg. 99)

• Interconnected “web” of pieces of code, or chunks
• Tangle extracts code
• Weave extracts docs (as LaTeX, html, pdf, text, etc.)
• CWEB, Sweave (R), Jupyter, emacs org mode, Maple

worksheets, etc.

Slide 6 of 38

Health Goals

Literate

Code Gen

Holistic

Conclusion

References

TCL T1 T2 TBTS

qin qout

RCLAD/2RFUEL/2 RFUEL/2 RCLAD/2RGAP RFILM

qmwr

CCL C1 C2

ExampleMASc Thesis - author - McMaster - Computing and Software

B.6.1 Computing q′N , T2 and kc

The input relative fuel power (q′NFRAC) is changed to linear ele-
ment power (q′N) by multiplying it with the initial linear element
rating (q′Nmax

) as given by DD25 of the SRS.

q′N = q′NFRACq′Nmax ; (B.8)

This q′N is used to determine the relevant temperatures for the
fuelpin. We evaluate linear element power as
〈Calculation of q′N 17〉 ≡17
∗q N = ∗q NFRAC ∗ (∗q Nmax);

This code is used in chunks 15 and 57

Now, we evaluate T2 in steady state by first setting the time
derivative term of Equation B.1 to zero as follows,

T1−T2

R1
= q′N (B.9)

Next we set the time derivative term of Equation B.2 to zero and
neglect the metal water heating term to get,

T1−T2

R1
=

T2−TB

R2
(B.10)

Substituting Equation B.9 in Equation B.10 and rearranging the
equation, we get the steady state case as:

T2 = TB +q′NR2, (B.11)

where R2 is given by DD12 of the SRS as,

R2 =
1

2πrchc
(B.12)

From DD18 of the SRS, we have the equation for hc as,

hc =
2kchb

2kc + τchb
(B.13)

Substituting Equation B.13 into Equation B.12, we get,

R2 =
1

2πrc

(
2kchb

2kc+τchb

) (B.14)

=
1

2πrc

(2kc + τchb

2kchb

)
(B.15)

The above equation cannot be evaluated directly in steady state,
because R2 is dependent on T2 through the clad conductivity
(kc) as given by DD15 of SRS. That is,

kc = aT2 +b, (B.16)

143

Slide 8 of 38

Health Goals

Literate

Code Gen

Holistic

Conclusion

References

LP Treatment Evaluation

• Uncovered 27 issues with previous docs
• Documentation improves reproducibility
• Pain point score:

• Lack of time: X
• Lack of dev exp: –
• Lack of technology exp: 7
• Freq of change: X

• Problems with literate programming
• Does not scale well (best for small examples, lessons)
• Difficult to refactor
• Manually repeat information in text and code
• Manually create traceability and structure

Slide 9 of 38

Health Goals

Literate

Code Gen

Holistic

Conclusion

References

Treatment 2: Code Generation

Compiler
Domain
Specific
Language

High
Level

Language

Slide 10 of 38

Health Goals

Literate

Code Gen

Holistic

Conclusion

References

A Virtual Material Testing
Laboratory

Given the deformation history of a material particle,
determine the internal stress within the material particle.

y

x

z

σxx

σxy

σxz

σyy

σyx

σyz

σzz
σzx

σzy

Slide 11 of 38

Health Goals

Literate

Code Gen

Holistic

Conclusion

References

Calculations
Given F ,Q, κ, φ, γ calculate:

K =

∫

V
BT DvpBdV ; F = Ri −

∫

V
BTσidV +

∫

V
BT ∆σvpdV

(1)
with

Dvp = D

[
I − ∆tC1λ

′∂Q
∂σ

(
∂F
∂σ

)T

D

]
, λ′ =

dλ
dF

(2)

∆σvp = ∆tC1λD
∂Q
∂σ

(3)

C1 = [1 + λ′∆t(He + Hp)]−1 (4)

He =

(
∂F
∂σ

)T

D(
∂Q
∂σ

) (5)

Hp = −∂F
∂κ

(
∂κ

∂εvp

)T ∂Q
∂σ

(6)

Slide 12 of 38

Health Goals

Literate

Code Gen

Holistic

Conclusion

References

Code Generation

• Specify variabilities: F ,Q, κ, φ, γ
• Symbolically calculate terms, including ∂Q

∂σ , ∂F
∂σ , etc.

• Symbolic processing avoids tedious and error-prone
hand calculations

• Reduces workload
• Allows non-experts to deal with new problems
• Increases reliability

• Use Maple Computer Algebra System

Slide 13 of 38

Health Goals

Literate

Code Gen

Holistic

Conclusion

References

Knowledge Capture and Code
Generation

Code generation works by codifying additional knowledge:
• Maple – symbolic math
• org mode – simple document structure
• lex and yacc – regular expressions and grammars
• ATLAS – hardware knowledge (Whaley et al., 2001)
• Spiral – FFT knowledge (Ofenbeck et al., 2017)
• Dolphin – Finite elem variational forms (Logg, 2006)
• Doxygen – API information

Slide 14 of 38

Health Goals

Literate

Code Gen

Holistic

Conclusion

References

Treatment and side effects

• Domain level programming
• Pain point scores:

• Lack of time: X
• Lack of dev exp: X
• Lack of technology exp: 7
• Freq of change: X

• Problems
• Focus is generally only on the code
• Code generation does not help with reproducibility

Slide 15 of 38

Health Goals

Literate

Code Gen

Holistic

Conclusion

References

Holistic Approach

• Combine
• Lit programming emphasis on documentation
• Code gen, but for everything

• Codify more knowledge
• Physics knowledge
• Computing knowledge
• Document knowledge
• Design knowledge
• Traceability knowledge
• Technology knowledge

Slide 16 of 38

Health Goals

Literate

Code Gen

Holistic

Conclusion

References

GlassBR

Given
• dimensions of plane
• glass type
• explosion characteristics
• tolerable breakage

probability
Predict whether the glass will
withstand the explosion

Drasil Inputs:

 - Program Name: GlassBR
 - Authors: Nikitha K and Spencer S
 - Symbols: tolerable load (), Risk of failure (), ...
 - Assumptions: Load duration factor constant,
 - Data definitions: relation for , ...
 - Design decisions:
 Modularity (input module),
 Implementation Type (Program),
 Logging (Yes),
 Input Structure (Bundled),
 Constant Structure (Inlined),
 Constant Rep (Constants),
 Real Number Rep (Double),
 ...

Drasil Inputs:

 - Program Name: GlassBR
 - Authors: Nikitha K and Spencer S
 - Symbols: tolerable load (), Risk of failure (), ...
 - Assumptions: Load duration factor constant,
 - Data definitions: relation for , ...
 - Design decisions:
 Modularity (input module),
 Implementation Type (Program),
 Logging (Yes),
 Input Structure (Bundled),
 Constant Structure (Inlined),
 Constant Rep (Constants),
 Real Number Rep (Double),
 ...

/glassbr
 /Website/GlassBR_SRS.html
 /Website/GlassBR_SRS.css
 /SRS/bibfile.bib
 /SRS/Makefile
 /SRS/GlassBR_SRS.tex
 /SRS/GlassBR_SRS.pdf
 /src/python
 /src/python/README.md
 /src/python/InputParameters.py
 /src/python/Calculations.py
 /src/python/Makefile
 /src/python/doxConfig
 ...

 ...
 /src/java/GlassBR/Calculations.java
 /src/java/Makefile
 /src/java/README.md
 ...
 /src/cpp/GlassBR
 /src/cpp/ReadTable.cpp
 /src/cpp/InputFormat.hpp
 /src/cpp/Calculations.cpp
 ...
 /src/swift/Calculations.swift
 ...
 /src/csharp/Control.cs
 ...

/glassbr
 /Website/GlassBR_SRS.html
 /Website/GlassBR_SRS.css
 /SRS/bibfile.bib
 /SRS/Makefile
 /SRS/GlassBR_SRS.tex
 /SRS/GlassBR_SRS.pdf
 /src/python
 /src/python/README.md
 /src/python/InputParameters.py
 /src/python/Calculations.py
 /src/python/Makefile
 /src/python/doxConfig
 ...

 ...
 /src/java/GlassBR/Calculations.java
 /src/java/Makefile
 /src/java/README.md
 ...
 /src/cpp/GlassBR
 /src/cpp/ReadTable.cpp
 /src/cpp/InputFormat.hpp
 /src/cpp/Calculations.cpp
 ...
 /src/swift/Calculations.swift
 ...
 /src/csharp/Control.cs
 ...

Software Requirements Specification for GlassBR
Nikitha Krithnan and Spencer Smith

Table of Symbols
qhat
B
...
Introduction
... The software, herein called GlassBR, ...

Assumptions
StdVals: LDF is constant
...

Data Definitions

...

Software Requirements Specification for GlassBR
Nikitha K and Spencer S

Table of Symbols

...
Introduction
... The software, herein called GlassBR, ...

Assumptions
ldfConstant: LDF is constant, depends on assumed
value of and , ...

Data Definitions

...

tex

html

GlassBR
Authors Nikitha K and Spencer S
How to Run the Program: In your terminal command
line, enter the same directory as this README file. Then
enter the following line
make run RUNARGS=input.txt
Configuration Files: SDF.txt, TSD.txt must be in the
same directory as the executable to run successfully
Versioning: Python Version 3.5.1

README.md

...

build:

run: build
python Control.py $(RUNARGS)
...

build: GlassBR/Control.class
...
GlassBR/Control.class:
GlassBR/Control.java ...
 javac GlassBR/Control.java

run: build
 java GlassBR.Control $(RUNARGS)
...

Jtol in SRS.pdf
_27M�K2 ..,b/7hQH

G�#2H ai`2bb /Bbi`B#miBQM 7�+iQ` U6mM+iBQMV #�b2/ QM S#iQH

avK#QH ӿiQH

lMBib lMBiH2bb

1[m�iBQM ӿiQH � HM ৈৈেHM ভ �� ԅ#iQH
ম ॕ ռφЈЈЈ սφЈЈЈॖֈφԚ ঁӺ ੁ ���� ॕ փφЈЈЈॖϵংֈ ԁӹӻৌোো

.2b+`BTiBQM ӿiQH Bb i?2 bi`2bb /Bbi`B#miBQM 7�+iQ` U6mM+iBQMV #�b2/ QM S#iQH UlMBiH2bbVԅ#iQH Bb i?2 iQH2`�#H2 T`Q#�#BHBiv Q7 #`2�F�;2 UlMBiH2bbVԐ Bb i?2 TH�i2 H2M;i? UHQM; /BK2MbBQMV UKVԑ Bb i?2 TH�i2 rB/i? Ub?Q`i /BK2MbBQMV UKVԜ Bb i?2 bm`7�+2 ~�r T�`�K2i2` UKȯɞ
Lɑ VԚ Bb i?2 bm`7�+2 ~�r T�`�K2i2` UKȯɞ

Lɑ VӺ Bb i?2 KQ/mHmb Q7 2H�biB+Biv Q7 ;H�bb US�Vԗ Bb i?2 KBMBKmK i?B+FM2bb UKVԁӹӻ Bb i?2 HQ�/ /m`�iBQM 7�+iQ` UlMBiH2bbV

LQi2b ԅ#iQH Bb 2Mi2`2/ #v i?2 mb2`XԐ �M/ ԑ �`2 i?2 /BK2MbBQMb Q7 i?2 TH�i2- r?2`2 UԐ ଯ ԑVXԜ- Ԛ- �M/ Ӻ +QK2 7`QK �,bi�M/�`/o�Hm2bXԗ Bb /2}M2/ BM ..,KBMh?B+F �M/ Bb #�b2/ QM i?2 MQKBM�H i?B+FM2bb2bXԁӹӻ Bb /2}M2/ BM ..,HQ�/.m`6�+iQ`X

aQm`+2 (R)

_27"v ..,iQHGQ�/

kj

Jtol in SRS.tex
...
Label & Stress distribution factor (Function) based on

Pbtol

\\ \midrule \\
Symbol & ${J_{\text{tol}}}$

\\ \midrule \\
Units & Unitless

\\ \midrule \\
Equation & \begin{displaymath}

{J_{\text{tol}}}=\ln\left(\ln\left(\frac
{1}{1-{P_{\text{b}\text{tol}}}}\right) \
frac{\left(\frac{a}{1000} \frac{b
}{1000}\right)ˆ{m-1}}{k \left(E\cdot
{}1000 \left(\frac{h}{1000}\right)ˆ{2}\
right)ˆ{m} LDF}\right)

\end{displaymath}
\\ \midrule \\
Description & ...

Jtol in SRS.html

...
<th>Equation</th>
<td>
\[{J_{\text{tol}}}=\ln\left(\ln\left(\frac{1}{1-{P_{\

text{b}\text{tol}}}}\right) \frac{\left(\frac{a
}{1000} \frac{b}{1000}\right)ˆ{m-1}}{k \left(E\cdot
{}1000 \left(\frac{h}{1000}\right)ˆ{2}\right)ˆ{m}
LDF}\right)\]

</td>
...

Jtol in Python
\brief Calculates stress distribution factor (

Function) based on Pbtol
\param inParams structure holding the input values
\return stress distribution factor (Function) based

on Pbtol
def func_J_tol(inParams):

outfile = open("log.txt", "a")
print("function func_J_tol called with inputs: {",

file=outfile)
print(" inParams = ", end="", file=outfile)
print("Instance of InputParameters object", file=

outfile)
print(" }", file=outfile)
outfile.close()

return math.log(math.log(1.0 / (1.0 - inParams.
P_btol)) * ((inParams.a / 1000.0 * (inParams.b
/ 1000.0)) ** (7.0 - 1.0) / (2.86e-53 * (7.17
e10 * 1000.0 * (inParams.h / 1000.0) ** 2.0) **
7.0 * inParams.LDF)))

Jtol in Java
/** \brief Calculates stress distribution factor (

Function) based on Pbtol
\param inParams structure holding the input

values
\return stress distribution factor (Function)

based on Pbtol
*/
public static double func_J_tol(InputParameters

inParams) throws IOException {
PrintWriter outfile;
outfile = new PrintWriter(new FileWriter(new

File("log.txt"), true));
...
return Math.log(Math.log(1.0 / (1.0 - inParams.

P_btol)) * (Math.pow(inParams.a / 1000.0 *
(inParams.b / 1000.0), 7.0 - 1.0) / (2.86e
-53 * Math.pow(7.17e10 * 1000.0 * Math.pow(
inParams.h / 1000.0, 2.0), 7.0) * inParams.
LDF)));

}

Jtol in Drasil (Haskell)

tolStrDisFacEq :: Expr
tolStrDisFacEq = ln (ln (recip_ (exactDbl 1 $- sy pbTol

))
‘mulRe‘ (((sy plateLen $/ exactDbl 1000) ‘mulRe‘ (sy

plateWidth $/ exactDbl 1000)) $ˆ (sy sflawParamM
$- exactDbl 1) $/

(sy sflawParamK ‘mulRe‘ ((sy modElas ‘mulRe‘
exactDbl 1000 ‘mulRe‘

square (sy minThick $/ exactDbl 1000)) $ˆ sy
sflawParamM) ‘mulRe‘ sy lDurFac)))

Jtol without Unit Conversion

tolStrDisFacEq :: Expr
tolStrDisFacEq = ln (ln (recip_ (exactDbl 1 $- sy pbTol

))
‘mulRe‘ ((sy plateLen ‘mulRe‘ sy plateWidth) $ˆ (sy

sflawParamM $- exactDbl 1) $/
(sy sflawParamK ‘mulRe‘ ((sy modElas ‘mulRe‘
square (sy minThick)) $ˆ sy sflawParamM) ‘mulRe‘ sy

lDurFac)))

Slide 32 of 38

Health Goals

Literate

Code Gen

Holistic

Conclusion

References

Drasil Inputs:

 - Program Name: GlassBR
 - Authors: Nikitha K and Spencer S
 - Symbols: tolerable load (), Risk of failure (), ...
 - Assumptions: Load duration factor constant,
 - Data definitions: relation for , ...
 - Design decisions:
 Modularity (input module),
 Implementation Type (Program),
 Logging (Yes),
 Input Structure (Bundled),
 Constant Structure (Inlined),
 Constant Rep (Constants),
 Real Number Rep (Double),
 ...

Drasil (Carette et al., 2021)

https://github.com/JacquesCarette/Drasil

Slide 34 of 38

Health Goals

Literate

Code Gen

Holistic

Conclusion

References

Holistic Treatment and Side
Effects

• Sustainable and reproducible
• Can generate literate documents, if desired
• Pain point scores:

• Lack of time: X
• Lack of dev exp: X
• Lack of technology exp: X
• Freq of change: X

• Treats all pain points, and no side effects, but
expensive medicine!

Slide 35 of 38

Health Goals

Literate

Code Gen

Holistic

Conclusion

References

Concluding Remarks

• Documentation does not have to be painful
• Combine benefits of Literate Programming

• Emphasis on documentation, reproducibility
• Organize information for a human being

• with benefits of Code Generation
• Capture knowledge only once
• Generate all things!
• Refactoring by regenerating

• Codify as much knowledge as possible
• Domain experts work at domain expert level
• Consistent by construction
• Can address additional pain points
• Can absorb other treatment options, like testing, CI
• Requires additional research and “clinical trials”

Slide 36 of 38

Health Goals

Literate

Code Gen

Holistic

Conclusion

References

References I

Jacques Carette, Spencer Smith, Jason Balaci, Anthony
Hunt, Ting-Yu Wu, Samuel Crawford, Dong Chen, Dan
Szymczak, Brooks MacLachlan, Dan Scime, and
Maryyam Niazi. Drasil, 2 2021. URL
https://github.com/JacquesCarette/Drasil/
tree/v0.1-alpha.

D. E. Knuth. Literate programming. The Computer Journal,
27(2):97–111, 1984. doi: 10.1093/comjnl/27.2.97. URL
http://comjnl.oxfordjournals.org/content/
27/2/97.abstract.

Anders Logg. Automating the finite element method.
Technical Report Preprint 2006-01, Finite Element
Centre, 2006. URL
http://www.femcenter.org/preprints/.

https://github.com/JacquesCarette/Drasil/tree/v0.1-alpha
https://github.com/JacquesCarette/Drasil/tree/v0.1-alpha
http://comjnl.oxfordjournals.org/content/27/2/97.abstract
http://comjnl.oxfordjournals.org/content/27/2/97.abstract
http://www.femcenter.org/preprints/

Slide 37 of 38

Health Goals

Literate

Code Gen

Holistic

Conclusion

References

References II

Georg Ofenbeck, Tiark Rompf, and Markus Püschel.
Staging for generic programming in space and time. In
GPCE, pages 15–28. ACM, 2017.

R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated
empirical optimization of software and the ATLAS
project. Parallel Computing, 27(1–2):3–35, 2001.

Slide 38 of 38

Health Goals

Literate

Code Gen

Holistic

Conclusion

References

Image Credits

• Holistic Medicine: 6 Websites for Finding Natural
Healing Advice

• Pain & Spine Center
• The Symptoms of a Rotator Cuff Injury and What You

Should Do
• 16 Books Featuring Books on the Cover
• Difference Between Naturopathic and Holistic

Medicine

https://www.newsmax.com/fastfeatures/holistic-medicine-websites-advice/2014/10/09/id/597217/
https://www.newsmax.com/fastfeatures/holistic-medicine-websites-advice/2014/10/09/id/597217/
https://www.youngstownortho.com/spine/
https://www.arksurgicalhospital.com/the-symptoms-of-a-rotator-cuff-injury-and-what-you-should-do-3/
https://www.arksurgicalhospital.com/the-symptoms-of-a-rotator-cuff-injury-and-what-you-should-do-3/
https://bookriot.com/books-with-books-on-the-cover/
https://www.emrindustry.com/difference-between-naturopathic-and-holistic-medicine/
https://www.emrindustry.com/difference-between-naturopathic-and-holistic-medicine/

	Health Goals and Pain Points
	Literate Programming
	Code Generation
	Holistic Treatment
	Concluding Remarks
	References

