Fostering Dynamic Interdisciplinary Creation of Research Software—Case Study

Najmeh Khalili-Mahani, MEng, PhD

Natacha Beck, MSc

BREADTH AND DEPTH

A summary of all the information gathered and available for research can be found in the UK Biobank Data Showcase.

Holistic Approach to Health Science

We need data-driven, 'holistic' and participatory research ecosystems that allow for inter-disciplinary inquiries into possible causes of illness

Research Software Requirements

Integrative Reproducible Robust

CANARIE RS3-031

Our Objective

Make a niche functional neuroimaging software available to larger community of (clinical) researchers.

Aims

fMRI => CBRAIN

Functional Magnetic Resonance Imaging measures brain activation in response to stimuli or drugs. Canadian Brain Research and Imaging Network is a CANARIE-funded webbased data processing system for analyzing large-scale research data.

Motion Artifacts Physiological Signals Cerebral Blood Flow + fMRI

Tracy, Wise (2014)

Sources of Heterogeneity		Bich Web Browser Client RESTful Services API
Experiment	Single dose, dose controlled, oral, intravenous	
Data	3T, 1.5 T, <mark>RSfMRI</mark> (# frames, TE/TR), <mark>ASL</mark> (pulse/continuous)	CBRAIN Portal Browser 2 Visualisation Services Visualisation Catalogue Tasks VOs Authentication Authorization Reporting Reporting
Objectives	Localization, Dose-response, Validation, Calibration, Clinical	Data Access API Network Data Providers Compute Resourced
Analyses	Preprocessing and noise removal , phenotypes (static/dynamic connectivity, hubness, BOLD response, etc.), Modeling	Buta Providers Compute Resources
Khalili-Mahani et al (2017)		Sherif et al (2014)

Typical fMRI dataset (Raw 0.2 GB -> Derivative 4.0 GB)

Subject {1... N}

```
Session {1 ... M}
```

Anatomical MRIs =>Pipeline A =>Standardize to an Atlas T2* Weighted fMRI =>Pipeline B + Pipeline A =>Compute Metrics Physiological Data => Pipeline C + Pipeline B => Noise-Correct Arterial Spin Labeling =>Pipeline D + Pipeline A => Compute Metrics

Challenge: Integration of Heterogenous Methods into Standardized & User-Friendly Software

In this presentation

- Approach
- Methodology
- Outcomes

Pragmatic Approach

Stretching the Penny

• Ensure that the additions support and fall in line with previous or ongoing work.

Identifying the Lowest Hanging Fruit

• Create intrinsic reward by energizing the team from succeeding in delivering MVPs.

Fitting In

• Respect existing standard operating procedures and software development culture.

Communication

• Translate between different disciplines and their practical cultures (e.g., neuroscientist, physicist, software engineer, designer.)

Participatory Approach

Identify scientific stakeholders

- Have they developed any computationally intensive software?
- Do they work with large-scale datasets?
- Do you have a history of collaboration?

Invite them to no-cost partnership

- Include *their* students in software integration efforts
- Pre-plan for *co-publishing* at the end of the project.

Methodology

Quasi-Agile

Simulation-Assisted

Pair Programming

Quasi-Agile: **Constraints**

Existing Code	PhysIOOxfordASLfMRIPrep
Existing Framework	 NIFTI file format CBRAIN Boutique
HQPs	 Students who needed training Coders who needed time Scientists who had time & data
Funding	 No revenues can be expected Under-appreciation of software development costs

Quasi-Agile "Sprints" are not 2-weeks!

Tool Preparation For Each Sprint

This task was done by **students** (Neuroscience and Brain Imaging) who were found through scientific **research partners**

Simulation-Supported *Design* via **Boutiques**

Boutiques is a tool to automatically publish, integrate, and execute applications across computational platforms. Boutiques applications are summarized in a simple yet rich JSON description, and enable the simulation, validation, evaluation, and application-specific monitoring of command-line tools.

Glatard et al, (2018) Boutiques: a flexible framework to **I** integrate command-line applications in computing platforms. *Gigasci (7)* 5

BoutiquesDescriptorMaker

Pair Programming

Facilitated by **Boutiques.**

Allowed ongoing training and communication over UI/UX **simulations.**

Fostered innovations that will further simplify tool integrations procedures.

Summary

Neuroimaging Software integration is a challenging process due to the complexity of the data and exploratory nature of it.

A **Pragmatic and Participatory Approach** helped us accomplish our aims to integrate specialized fMRI tools into CBRAIN.

A **Quasi** Agile Methodology + Simulationframeworks facilitated student training and software integration.

We were able to complete deliverables and improve tool integration process along the way.

Acknowledgement

Pierre Rioux Sergiy Boroday Darius Valevicius Safa Sanami Darcy Quesnel Bryan Caron Reza Adalat

Alan Evans